Given Coordinates: x1 = 65 y1 = 80, x2 = 120 y2 = 150
Distance Formula: d = √(x2 − x1)2 + (y2 − y1)2
Substitute the given coordinates into the Distance Formula and Simplify:
d = √(120 − 65)2 + (150 − 80)2
d = √552 + 702
d = √3,025 + 4,900
d = √7,925
d = √25 * 317
d = √25 * √317
d = 5√317
Therefore, the distance between the points (65, 80) and (120, 150) is equal to 5√317
Note: As a decimal number, 5√317 ≈ 89.022469073824
Distance Formula: d = √(x2 − x1)2 + (y2 − y1)2
Substitute the given coordinates into the Distance Formula and Simplify:
d = √(120 − 65)2 + (150 − 80)2
d = √552 + 702
d = √3,025 + 4,900
d = √7,925
d = √25 * 317
d = √25 * √317
d = 5√317
Therefore, the distance between the points (65, 80) and (120, 150) is equal to 5√317
Note: As a decimal number, 5√317 ≈ 89.022469073824