Factorial

  • Denoted by n!
  • The factorial of an integer n is the product of the integers from n down to 1
  • Example: 4! = 4 x 3 x 2 x 1 = 24
  • Special Cases: 0! = 1, and 1! = 1
  • Application: Determining the number of ways or permutations n distinct objects can be displayed
Factorial (Wikipedia)
Selected members of the factorial sequence (sequence A000142 in the OEIS); values specified in scientific notation are rounded to the displayed precision
n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 1.551121004×1025
50 3.041409320×1064
70 1.197857167×10100
100 9.332621544×10157
450 1.733368733×101000
1000 4.023872601×102567
3249 6.412337688×1010000
10000 2.846259681×1035659
25206 1.205703438×10100000
100000 2.824229408×10456573
205023 2.503898932×101000004
1000000 8.263931688×105565708
10100 1010101.9981097754820

In mathematics, the factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n:

For example,

The value of 0! is 1, according to the convention for an empty product.

The factorial operation is encountered in many areas of mathematics, notably in combinatorics, algebra, and mathematical analysis. Its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there are n!.

The factorial function can also be extended to non-integer arguments while retaining its most important properties by defining x! = Γ(x + 1), where Γ is the gamma function; this is undefined when x is a negative integer.

« Back to Glossary Index

Related Applications