Greatest Common Factor of 24 and 32 by Prime Factorization

Given Numbers: 24, 32
Identify the Prime Factors of 24 and 32 by Prime Factorization
  • Prime Factorization of 24: 24 = 2 x 2 x 2 x 3 = 23 x 31
  • Prime Factorization of 32: 32 = 2 x 2 x 2 x 2 x 2 = 25

Determine the Prime Factor(s) that are common to the Prime Factorization of each number:

  • 2 is the only Prime Factor common to the Prime Factorizations of 24 and 32

Determine the least number of occurrences of 2 among the Prime Factorizations:

  • 2 occurs at least 3 times in each Prime Factorization

As a result, the Greatest Common Factor (GCF) of 24 and 32 is equal to 2 x 2 x 2, which equals 2 raised to the power of its least number of occurrences or smallest exponent among the Prime Factorizations:

  • GCF(24, 32) = 23 = 2 x 2 x 2
  • GCF(24, 32) = 8

Therefore, the Greatest Common Factor of 24 and 32 by Prime Factorization = 8

The solution above and other related solutions were provided by the GCF by Prime Factorization Application.